Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all o...
متن کاملSemi-Stochastic Gradient Descent Methods
In this paper we study the problem of minimizing the average of a large number (n) of smooth convex loss functions. We propose a new method, S2GD (Semi-Stochastic Gradient Descent), which runs for one or several epochs in each of which a single full gradient and a random number of stochastic gradients is computed, following a geometric law. The total work needed for the method to output an ε-ac...
متن کاملStochastic Proximal Gradient Descent with Acceleration Techniques
Proximal gradient descent (PGD) and stochastic proximal gradient descent (SPGD) are popular methods for solving regularized risk minimization problems in machine learning and statistics. In this paper, we propose and analyze an accelerated variant of these methods in the mini-batch setting. This method incorporates two acceleration techniques: one is Nesterov’s acceleration method, and the othe...
متن کاملStochastic Proximal Gradient Descent for Nuclear Norm Regularization
In this paper, we utilize stochastic optimization to reduce the space complexity of convex composite optimization with a nuclear norm regularizer, where the variable is a matrix of size m × n. By constructing a low-rank estimate of the gradient, we propose an iterative algorithm based on stochastic proximal gradient descent (SPGD), and take the last iterate of SPGD as the final solution. The ma...
متن کاملMomentum and Optimal Stochastic Search
The rate of convergence for gradient descent algorithms, both batch and stochastic, can be improved by including in the weight update a “momentum” term proportional to the previous weight update. Several authors [1, 2] give conditions for convergence of the mean and covariance of the weight vector for momentum LMS with constant learning rate. However stochastic algorithms require that the learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2020
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-020-00220-z